报告一:图神经网络异常检测再思考
摘要:图神经网络(GNN)被广泛应用于结构化数据的异常检测,例如社交网络恶意账号检测、金融交易欺诈检测等。我们首次从谱域的角度分析了异常数据可能造成的影响。核心发现是:异常数据将导致频谱能量出现 “右移” 现象,即频谱能量分布从低频向高频移动。基于这一发现,我们又提出了 Beta 小波图神经网络(BWGNN)。它拥有多个具有局部性的带通滤波器,能够更好捕获 “右移” 产生的高频异常信息。在四个大规模图异常检测数据集上,BWGNN 的性能均优于现有的模型。
报告人简介:李佳,香港科技大学(广州) 数据科学与分析学域 助理教授,2021年博士毕业于香港中文大学, 2010年本科毕业于北京邮电大学。李佳博士在工业界有多年的异常检测工作经历,曾供职于Google和腾讯(微信支付风控)。其研究目前主要为图数据异常检测,可逆图神经网络以及基于图数据的药物发现和医疗健康。他和他的团队在多个人工智能与数据挖掘领域顶级会议,如Nature Communications, ICLR, NeurIPS, KDD, ICML, TPAMI等发表多篇论文。
报告二:人工智能在图计算问题上的应用
Abstract: With the rapid development of machine learning and deep learning models, there is increasing interest in applying these AI methods to graph computational problems. In this talk, we will introduce some representative work, including some of our recent works, for several algorithmic problem on graph data, such as shortest path queries, subgraph matching, subgraph counting, and querying noisy graphs. We will also outline other promising problems where AI methods may help and list open problems.
Short Biography: Dr. Wei Wang is a currently a Professor in the Data Science and Analytics Thrust, Information Hub, The Hong Kong University of Science and Technology (Guangzhou), China. Before that, he was a Professor in the School of Computer Science and Engineering, The University of New South Wales, Australia. His current research interests include Similarity Query Processing, Artificial Intelligence, Knowledge Graphs, Security for AI Models, and AI for Science. He has published more than 160 papers in reputed journals and conferences, and has won the Best Paper Awards in SIGCOMM 2022, ICMR 2021, and the Best Student Paper at DASFAA 2016. He is an Associate Editor of IEEE Transactions on Knowledge and Data Engineering and Journal of Materials Informatics, and program committee members in various first-tier conferences (SIGMOD, VLDB, ICDE, SIGIR, SIGKDD, etc.).
长按下图并点击“识别图中二维码”
即可关注北邮 GAMMA Lab 公众号
推荐站内搜索:最好用的开发软件、免费开源系统、渗透测试工具云盘下载、最新渗透测试资料、最新黑客工具下载……
还没有评论,来说两句吧...