我们还收集了一些关于特定目标程序修复的研究文献。M.Caner T和Berk S [17]提出了一个名为ZeroLeak的框架,探索如何利用大模型自动生成修复代码来解决软件中的侧信道漏洞。ZeroLeak通过零样本学习引导大模型生成特定漏洞的补丁。生成的补丁会通过动态分析工具检测,以确保其在功能正确的同时也能防止信息泄露。Sudipta P等人 [18]提出了一个新框架DIVAS,将用户定义的SoC规范映射到常见弱点枚举(CWE),生成SystemVerilog断言(SVA)进行验证并执行安全策略,自动化漏洞检测和策略执行,减少手工工作并增强SoC安全性。
Baleegh A等人 [19]构建了一个硬件安全漏洞代表性数据集,并利用大模型自动修复其中的Verilog代码。Tan K L等人 [20]独特地关注了大模型在JavaScript程序安全漏洞修复中的应用,使用2023年CWE前25列表作为参考,选取JavaScript相关的漏洞评估模型生成正确补丁的准确性。研究结果强调了大模型在JavaScript安全性中的潜力,特别是在Web开发中占主导地位的这一编程语言中的表现。
向上滑动,查看所有参考文献
1.Baleegh Ahmad, Benjamin Tan, Ramesh Karri, and Hammond Pearce. Flag: Finding line anomalies (in code) with generative ai. arXiv preprint arXiv:2306.12643, 2023.
2.Julian Aron Prenner and Romain Robbes. Automatic program repair with openai’s codex: Evaluating quixbugs. arXiv preprint arXiv:2111.03922, 2021.
3.Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. An analysis of the automatic bug fixing performance of chatgpt. arXiv preprint arXiv:2301.08653, 2023.
4.Jan Keller and Jan Nowakowski. Ai-powered patching: the future of automated vulnerability fixes. Technical report, 2024.
5.Jiaxin Yu, Peng Liang, Yujia Fu, Amjed Tahir, Mojtaba Shahin, Chong Wang, and Yangxiao Cai. Security code review by llms: A deep dive into responses. arXiv preprint arXiv:2401.16310, 2024.
6.Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Practical program repair in the era of large pre-trained language models. arXiv preprint arXiv:2210.14179, 2022.
7.Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan Dolan-Gavitt. Examining zero-shot vulnerability repair with large language models. In 2023 IEEE Symposium on Security and Privacy (SP), pages 2339–2356, 2023.
8.Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin, and Sameena Shah.How effective are neural networks for fixing security vulnerabilities. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA ’23. ACM, July 2023.
9.Kamel Alrashedy and Abdullah Aljasser. Can llms patch security issues? arXiv preprint arXiv:2312.00024,2024.
10.Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey Svyatkovskiy. Inferfix: End-to-end program repair with llms. arXiv preprint arXiv:2303.07263, 2023.
11.David de Fitero-Dominguez, Eva Garcia-Lopez, Antonio Garcia-Cabot, and Jose-Javier Martinez-Herraiz. Enhanced automated code vulnerability repair using large language models. arXiv preprint arXiv:2401.03741,2024.
12.Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to self-debug. arXiv preprint arXiv:2304.05128, 2023.
13.Toufique Ahmed and Premkumar Devanbu. Better patching using llm prompting, via self-consistency. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 1742–1746, 2023.
14.Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. Copiloting the copilots: Fusing large language models with completion engines for automated program repair. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, page 172–184, New York, NY, USA, 2023. Association for Computing Machinery.
15.Nafis Tanveer Islam, Joseph Khoury, Andrew Seong, Mohammad Bahrami Karkevandi, Gonzalo De La Torre Parra, Elias Bou-Harb, and Peyman Najafirad. Llm-powered code vulnerability repair with reinforcement learning and semantic reward. arXiv preprint arXiv:2401.03374, 2024.
16.Yuxiao Chen, Jingzheng Wu, Xiang Ling, Changjiang Li, Zhiqing Rui, Tianyue Luo, and Yanjun Wu. When large language models confront repository-level automatic program repair: How well they done? arXiv preprint arXiv:2403.00448, 2024.
17.M. Caner Tol and Berk Sunar. Zeroleak: Using llms for scalable and cost effective side-channel patching. arXiv preprint arXiv:2308.13062, 2023.
18.Sudipta Paria, Aritra Dasgupta, and Swarup Bhunia. Divas: An llm-based end-to-end framework for soc security analysis and policy-based protection. arXiv preprint arXiv:2308.06932, 2023.
19.Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh Karri, and Hammond Pearce. Fixing hardware security bugs with large language models. arXiv preprint arXiv:2302.01215, 2023.
20.Tan Khang Le, Saba Alimadadi, and Steven Y Ko. A study of vulnerability repair in javascript programs with large language models. arXiv e-prints, pages arXiv–2403, 2024.
推荐站内搜索:最好用的开发软件、免费开源系统、渗透测试工具云盘下载、最新渗透测试资料、最新黑客工具下载……
还没有评论,来说两句吧...