Xmake 是一个基于 Lua 的轻量级跨平台构建工具。
它非常的轻量,没有任何依赖,因为它内置了 Lua 运行时。
它使用 xmake.lua 维护项目构建,相比 makefile/CMakeLists.txt,配置语法更加简洁直观,对新手非常友好,短时间内就能快速入门,能够让用户把更多的精力集中在实际的项目开发上。
我们能够使用它像 Make/Ninja 那样可以直接编译项目,也可以像 CMake/Meson 那样生成工程文件,另外它还有内置的包管理系统来帮助用户解决 C/C++ 依赖库的集成使用问题。
目前,Xmake 主要用于 C/C++ 项目的构建,但是同时也支持其他 native 语言的构建,可以实现跟 C/C++ 进行混合编译,同时编译速度也是非常的快,可以跟 Ninja 持平。
Xmake = Build backend + Project Generator + Package Manager + [Remote|Distributed] Build + Cache
尽管不是很准确,但我们还是可以把 Xmake 按下面的方式来理解:
Xmake ~= Make/Ninja + CMake/Meson + Vcpkg/Conan + distcc + ccache/sccache
- 项目源码
- 官方文档
- 入门课程
新特性介绍
更加智能化构建第三方库
在先前的版本中,Xmake 提供了一种 TryBuild 模式,可以在没有 xmake.lua 的情况下,使用 Xmake 尝试对 autoconf/cmake/meson 等维护的第三方项目进行直接构建。
其实,也就是让 Xmake 检测到对应的构建系统后,调用 cmake 等命令来实现,但是会帮助用户简化配置操作,另外还能对接 xmake 的交叉编译工具链配置。
但是,这种模式有一定的失败率,比如以下一些情况,都会可能导致构建失败:
- 项目代码自身存在缺陷,导致编译错误
- 项目代码不支持当前平台
- 构建脚本存在缺陷
- 缺少特定的配置参数
- 缺少依赖库,需要用户手动安装
- 编译器版本太低,不支持部分代码
而 TryBuild 模式通常处理这些情况,但是在新版本中,我们对 TryBuild 模式引入了一种新的机制,通过复用 xmake-repo 仓库中的构建脚本,来改进构建逻辑。
它大概得处理流程是这样子的:
- 在第三方源码库目录执行 xmake 命令
- Xmake 获取目录名,尝试解析项目名和版本
- 尝试从 xmake-repo 仓库匹配现有的包
- 如果匹配成功,直接采用包中构建逻辑来构建
- 如果没匹配成功,回退到原来的 TryBuild 逻辑
这能带来什么好处呢,如果匹配成功,我们能够解决上面提到的各种问题。
即使当前项目源码不支持指定平台,或者源码和构建脚本存在一定的缺陷,Xmake 也能自动打入特定 patch 去修复它,并引入需要的依赖包,确保它肯定能够一键编译通过。
我们使用 libjpeg 库为例,来直观的感受下。
首先是下载对应源码包
$ wget https://jaist.dl.sourceforge.net/project/libjpeg-turbo/2.1.4/libjpeg-turbo-2.1.4.tar.gz $ tar -xvf libjpeg-turbo-2.1.4.tar.gz $ cd libjpeg-turbo-2.1.4
然后进入目录执行 Xmake 命令
Xmake 如果检测到是 libjpeg 库,就会提示用户,是否作为 libjpeg 2.1.4 来构建。
ruki-2:libjpeg-turbo-2.1.4 ruki$ xmake note: libjpeg-turbo 2.1.4 in xmake-repo found, try building it or you can run `xmake f --trybuild=` to set buildsystem (pass -y or --confirm=y/n/d to skip confirm)? please input: y (y/n)
我们按下回车键确认继续构建。
checking for cmake ... /usr/local/bin/cmake /usr/local/bin/cmake -DCMAKE_BUILD_TYPE=Release -DENABLE_SHARED=OFF -DENABLE_STATIC=ON -DCMAKE_POSITION_INDEPENDENT_CODE=ON -DCMAKE_INSTALL_LIBDIR:PATH=lib -DCMAKE_INSTALL_PREFIX=/Users/ruki/.xmake/packages/l/libjpeg-turbo/2.1.4/646b795702e34be89c5745333d052aa2 -G "Unix Makefiles" -DCMAKE_POSITION_INDEPENDENT_CODE=ON /Users/ruki/Downloads/libjpeg-turbo-2.1.4 -- CMAKE_BUILD_TYPE = Release -- VERSION = 2.1.4, BUILD = 20220923 -- 64-bit build (x86_64) -- CMAKE_INSTALL_PREFIX = /Users/ruki/.xmake/packages/l/libjpeg-turbo/2.1.4/646b795702e34be89c5745333d052aa2 -- CMAKE_INSTALL_BINDIR = bin (/Users/ruki/.xmake/packages/l/libjpeg-turbo/2.1.4/646b795702e34be89c5745333d052aa2/bin) -- CMAKE_INSTALL_DATAROOTDIR = share (/Users/ruki/.xmake/packages/l/libjpeg-turbo/2.1.4/646b795702e34be89c5745333d052aa2/share) -- CMAKE_INSTALL_DOCDIR = share/doc/libjpeg-turbo (/Users/ruki/.xmake/packages/l/libjpeg-turbo/2.1.4/646b795702e34be89c5745333d052aa2/share/doc/libjpeg-turbo) -- CMAKE_INSTALL_INCLUDEDIR = include (/Users/ruki/.xmake/packages/l/libjpeg-turbo/2.1.4/646b795702e34be89c5745333d052aa2/include) -- CMAKE_INSTALL_LIBDIR = lib (/Users/ruki/.xmake/packages/l/libjpeg-turbo/2.1.4/646b795702e34be89c5745333d052aa2/lib) -- CMAKE_INSTALL_MANDIR = share/man (/Users/ruki/.xmake/packages/l/libjpeg-turbo/2.1.4/646b795702e34be89c5745333d052aa2/share/man) -- Shared libraries disabled (ENABLE_SHARED = 0) -- Static libraries enabled (ENABLE_STATIC = 1) -- 12-bit JPEG support disabled (WITH_12BIT = 0) -- Arithmetic decoding support enabled (WITH_ARITH_DEC = 1) -- Arithmetic encoding support enabled (WITH_ARITH_ENC = 1) -- TurboJPEG API library enabled (WITH_TURBOJPEG = 1) -- TurboJPEG Java wrapper disabled (WITH_JAVA = 0) -- In-memory source/destination managers enabled (WITH_MEM_SRCDST = 1) -- Emulating libjpeg API/ABI v6.2 (WITH_JPEG7 = 0, WITH_JPEG8 = 0) -- libjpeg API shared library version = 62.3.0 -- Compiler flags = -O3 -DNDEBUG -- Linker flags = -- INLINE = __inline__ __attribute__((always_inline)) (FORCE_INLINE = 1) -- THREAD_LOCAL = __thread -- CMAKE_EXECUTABLE_SUFFIX = -- CMAKE_ASM_NASM_COMPILER = /usr/local/bin/nasm -- CMAKE_ASM_NASM_OBJECT_FORMAT = macho64 -- CMAKE_ASM_NASM_FLAGS = -DMACHO -D__x86_64__ -DPIC -- SIMD extensions: x86_64 (WITH_SIMD = 1) -- FLOATTEST = sse -- Configuring done -- Generating done -- Build files have been written to: /Users/ruki/Downloads/libjpeg-turbo-2.1.4/build_646b7957 make -j10 [ 2%] Built target md5cmp [ 19%] Built target wrjpgcom [ 20%] Built target simd [ 21%] Built target strtest [ 22%] Built target rdjpgcom [ 80%] Built target jpeg-static [ 84%] Built target turbojpeg-static [ 90%] Built target tjbench-static [ 90%] Built target tjunittest-static [ 91%] Built target jpegtran-static [ 98%] Built target djpeg-static [100%] Built target cjpeg-static make install [ 1%] Built target strtest [ 3%] Built target wrjpgcom [ 19%] Built target simd [ 52%] Built target turbojpeg-static [ 53%] Built target rdjpgcom [ 82%] Built target jpeg-static [ 85%] Built target jpegtran-static [ 90%] Built target djpeg-static [ 93%] Built target tjunittest-static [ 97%] Built target cjpeg-static [ 98%] Built target tjbench-static [100%] Built target md5cmp Install the project... exporting libjpeg-turbo-2.1.4 -> /Users/ruki/Downloads/libjpeg-turbo-2.1.4/build/artifacts/l/libjpeg-turbo/2.1.4/646b795702e34be89c5745333d052aa2 output to /Users/ruki/Downloads/libjpeg-turbo-2.1.4/build/artifacts build ok!
只要检测匹配成功,通常肯定能够完成编译,成功率接近 100%,最后 Xmake 会将编译产物输出到当前目录的 build/artifacts
下面。
对接交叉编译工具链
这种智能构建模式,我们不仅能够编译本机程序,还可以对接交叉编译工具链,实现对 ios/android 以及任意交叉编译平台的支持。
例如,编译 Android 平台,我们只需要传递 --trybuild=xrepo
参数,然后切换到 android 平台即可,Xmake 会透传所有 ndk 工具链信息。
$ xmake f -p android --trybuild=xrepo --ndk=~/files/android-ndk-r20b -c $ xmake xmake f -c --require=n -v -p android -a armeabi-v7a -m release -k static --ndk=/Users/ruki/files/android-ndk-r20b checking for Android SDK directory ... ~/Library/Android/sdk checking for Build Tools Version of Android SDK ... 33.0.0 checking for NDK directory ... /Users/ruki/files/android-ndk-r20b checking for SDK version of NDK ... 21 checking for clang++ ... /Users/ruki/files/android-ndk-r20b/toolchains/llvm/prebuilt/darwin-x86_64/bin/clang++ checking for the shared library linker (sh) ... clang++ checking for clang++ ... /Users/ruki/files/android-ndk-r20b/toolchains/llvm/prebuilt/darwin-x86_64/bin/clang++ checking for the linker (ld) ... clang++ ... exporting libjpeg-turbo-2.1.4 -> /Users/ruki/Downloads/libjpeg-turbo-2.1.4/build/artifacts/l/libjpeg-turbo/2.1.4/79c2e21f436b4ab08a3c23a6cbae8c0e output to /Users/ruki/Downloads/libjpeg-turbo-2.1.4/build/artifacts build ok!
回退到直接编译
如果我们不想使用 xmake-repo 的构建脚本,我们也能回退到 cmake/autoconf 直接去尝试构建它们。
但是这样可能会存在一定的失败率,并且有可能会额外编译一些不需要的二进制目标。而 xmake-repo 里面的构建脚本是最优化的,精简了很多没必要的构建参数,比如禁用 tests/examples 构建等等。
我们只需要先敲 n 取消基于包脚本的智能构建模式,Xmake 会有新的提示,让用户选择是否继续采用 cmake/autoconf 来尝试构建。
$ xmake note: libjpeg-turbo 2.1.4 in xmake-repo found, try building it or you can run `xmake f --trybuild=` to set buildsystem (pass -y or --confirm=y/n/d to skip confirm)? please input: y (y/n) n note: CMakeLists.txt found, try building it or you can run `xmake f --trybuild=` to set buildsystem (pass -y or --confirm=y/n/d to skip confirm)? please input: y (y/n)
支持 Windows Arm64
新版本我们还对 Windows 的构建支持做了改进,新增了 Windows Arm64 平台支持,只需要切换到 arm64 架构即可。
$ xmake f -a arm64 $ xmake
改进规则支持依赖顺序执行
关联依赖可以绑定一批规则,也就是不必对 target 挨个去使用 add_rules()
添加规则,只需要应用一个规则,就能生效它和它的所有依赖规则。
例如:
rule("foo") add_deps("bar") rule("bar") ...
我们只需要 add_rules("foo")
,就能同时应用 foo 和 bar 两个规则。
但是,默认情况下,依赖之间是不存在执行的先后顺序的,foo 和 bar 的 on_build_file
等脚本是并行执行的,顺序未定义。
如果要严格控制执行顺序,在新版本中,我们可以配置 add_deps("bar", {order = true})
,告诉 xmake,我们需要根据依赖顺序来执行同级别的脚本。
例如:
rule("foo") add_deps("bar", {order = true}) on_build_file(function (target, sourcefile) end) rule("bar") on_build_file(function (target, sourcefile) end)
bar 的 on_build_file
将会被先执行。
更好的动态配置目标和规则
上面这种控制规则依赖的方式,只适合 foo 和 bar 两个规则都是自定义规则,如果想要将自己的规则插入到 xmake 的内置规则之前执行,这就不适用了。
这个时候,我们需要使用更加灵活的动态规则创建和注入的方式,去修改内置规则。
例如,我们想在内置的 c++.build
规则之前,执行自定义 cppfront 规则的 on_build_file
脚本,我们可以通过下面的方式来实现。
Xmake ~= Make/Ninja + CMake/Meson + Vcpkg/Conan + distcc + ccache/sccache
0
支持从包中引入自定义规则
现在,我们还可以在包管理仓库中,添加自定义构架规则脚本,实现跟随包进行动态下发和安装。
我们需要将自定义规则放到仓库的 packages/x/xxx/rules
目录中,它会跟随包一起被安装。
当然,它也存在一些限制:
- 在包中规则,我们不能添加
on_load
,after_load
脚本,但是通常我们可以使用on_config
来代替。
添加包规则
我们需要将规则脚本添加到 rules 固定目录下,例如:packages/z/zlib/rules/foo.lua
Xmake ~= Make/Ninja + CMake/Meson + Vcpkg/Conan + distcc + ccache/sccache
1
应用包规则
使用规则的方式跟之前类似,唯一的区别就是,我们需要通过 @packagename/
前缀去指定访问哪个包里面的规则。
具体格式:add_rules("@packagename/rulename")
,例如:add_rules("@zlib/foo")
。
Xmake ~= Make/Ninja + CMake/Meson + Vcpkg/Conan + distcc + ccache/sccache
2
通过包别名引用规则
如果存在一个包的别名,xmake 将优先考虑包的别名来获得规则。
Xmake ~= Make/Ninja + CMake/Meson + Vcpkg/Conan + distcc + ccache/sccache
3
添加包规则依赖
我们可以使用add_deps("@bar")
来添加相对于当前包目录的其他规则。
然而,我们不能添加来自其他包的规则依赖,它们是完全隔离的,我们只能参考用户项目中由add_requires
导入的其他包的规则。
packages/z/zlib/rules/foo.lua
Xmake ~= Make/Ninja + CMake/Meson + Vcpkg/Conan + distcc + ccache/sccache
4
packages/z/zlib/rules/bar.lua
Xmake ~= Make/Ninja + CMake/Meson + Vcpkg/Conan + distcc + ccache/sccache
5
更加严格的包依赖兼容性支持
我们新增了两个包相关的策略,用于开启更加严格的包依赖兼容性控制。
这主要用于解决一些包每次版本更新,可能都会存在一些 abi 不兼容,或者破坏其他依赖它的包,而默认 Xmake 是不会去重新编译安装它们的,除非它们的版本和配置也被更新了。
这就可能存在一定概率编译兼容性被破坏,导致最终链接失败。
package.librarydeps.strict_compatibility
默认禁用,如果启用它,那么当前包和它的所有库依赖包之间会保持严格的兼容性,任何依赖包的版本更新,都会强制触发当前包的重新编译安装。
以确保所有的包都是二进制兼容的,不会因为某个依赖包接口改动,导致和其他已被安装的其他包一起链接时候,发生链接和运行错误。
Xmake ~= Make/Ninja + CMake/Meson + Vcpkg/Conan + distcc + ccache/sccache
6
例如,如果 bar 或者 zoo 的版本有更新,那么 foo 也会重新编译安装。
package.strict_compatibility
默认禁用,如果启用它,那么当前包和其他所有依赖它的包之间会保持严格的兼容性,这个包的版本更新,都会强制触发其他父包的重新编译安装。
以确保所有的包都是二进制兼容的,不会因为某个依赖包接口改动,导致和其他已被安装的其他包一起链接时候,发生链接和运行错误。
Xmake ~= Make/Ninja + CMake/Meson + Vcpkg/Conan + distcc + ccache/sccache
7
例如,如果 foo 的版本有更新,那么 bar 和 zoo 都会被强制重新编译安装。
package.install_always
每次运行 xmake f -c
重新配置的时候,总是会重新安装包,这对于本地第三方源码包集成时候比较有用。
因为,用户可能随时需要修改第三方源码,然后重新编译集成它们。
之前只能通过每次修改包版本号,来触发重新编译,但是有了这个策略,就能每次都会触发重编。
Xmake ~= Make/Ninja + CMake/Meson + Vcpkg/Conan + distcc + ccache/sccache
8
新增 clang-cl 工具链
尽管之前的版本,我们也支持切换到 clang-cl 编译器,但是切换比较繁琐,得挨个设置。
Xmake ~= Make/Ninja + CMake/Meson + Vcpkg/Conan + distcc + ccache/sccache
9
而且还得将 clang-cl.exe 所在目录加入 %PATH% 才行。
既然现在 vs 都自带了 clang-cl 工具链,那么 Xmake 完全可以自动检测到并使用它。
因此,在新版本中,我们新增了 clang-cl 工具链,仅仅只需要 xmake f --toolchain=clang-cl
就可以快速切换到 clang-cl 工具链,而无需任何 PATH 设置。
更新内容
新特性
- #2140: 支持 Windows Arm64
- #2719: 添加
package.librarydeps.strict_compatibility
策略严格限制包依赖兼容性 - #2810: 支持 os.execv 去执行 shell 脚本文件
- #2817: 改进规则支持依赖顺序执行
- #2824: 传递 cross-file 交叉编译环境给 meson.install 和 trybuild
- #2856: xrepo 支持从当前指定源码目录调试程序
- #2859: 改进对三方库的 trybuild 构建,利用 xmake-repo 仓库脚本更加智能化地构建三方库
- #2879: 更好的动态创建和配置 target 和 rule
- #2374: 允许 xmake 包中引入自定义规则
- 添加 clang-cl 工具链
改进
- #2745: 改进 os.cp 支持符号链接复制
- #2773: 改进 vcpkg 包安装,支持 freebsd 平台
- #2778: 改进 xrepo.env 支持 target 的运行环境加载
- #2783: 添加摘要算法选项到 WDK 的 signtool 签名工具
- #2787: 改进 json 支持空数组
- #2782: 改进查找 matlib sdk 和运行时
- #2793: 改进 mconfdialog 配置操作体验
- #2804: 安装依赖包支持 macOS arm64/x86_64 交叉编译
- #2809: 改进 msvc 的编译优化选项
- 改进 trybuild 模式,为 meson/autoconf/cmake 提供更好的交叉编译支持
- #2846: 改进对 configfiles 的生成
- #2866: 更好地控制 rule 规则执行顺序
Bugs 修复
- #2740: 修复 msvc 构建 C++ modules 卡死问题
- #2875: 修复构建 linux 驱动错误
- #2885: 修复 ccache 下,msvc 编译 pch 失败问题
还没有评论,来说两句吧...