关键词
AI算法
大学研究人员开发了一种使用机器学习技术的算法来检测这些尝试并在几秒钟内将其关闭。
该算法在美国陆军 (TARDEC) 使用的 GVR-BOT 复制品中进行了测试,记录了 99% 的攻击预防成功率,只有不到 2% 的测试案例出现误报。
识别中间人攻击
检测针对无人驾驶车辆和机器人的 MitM 很复杂,因为这些系统在容错模式下运行,因此正常操作和故障情况之间的区分可能很模糊。
此外,机器人系统可能会在各个层面受到损害,从核心系统到其子系统及其子组件,从而导致可能导致机器人功能失调的操作问题。
大学研究人员开发了一种系统,可以分析机器人的网络流量数据,以检测对其进行破坏的企图。该系统使用基于节点的方法,仔细检查数据包数据,并使用基于流统计的系统从数据包标头读取元数据。
研究人员发布的详细技术论文深入研究了为此目的开发的深度学习 CNN(卷积神经网络)模型的细节,该模型包含多个层和过滤器,可提高网络攻击检测结果的可靠性。
即使仅经过 2-3 个 epoch 的模型训练,对复制机器人进行的真实测试以及针对各种系统的模拟网络攻击也产生了出色的结果和较高的识别精度。
这种新颖保护系统的优化版本可以在类似但要求更高的机器人应用中找到应用,例如无人驾驶飞机。
END
阅读推荐
安全圈
←扫码关注我们
网罗圈内热点 专注网络安全
实时资讯一手掌握!
好看你就分享 有用就点个赞
支持「安全圈」就点个三连吧!
推荐站内搜索:最好用的开发软件、免费开源系统、渗透测试工具云盘下载、最新渗透测试资料、最新黑客工具下载……
还没有评论,来说两句吧...